

Development of Surrogate Model Fuel for F-76

Youngchul Ra, Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison

MACCCR Annual Fuels Research Review September 19, 2012

Outline of talk

- □ONR project
- ☐ Surrogate model for F-76 diesel fuel
 - Physical property model for F-76
 - Reaction kinetics model for F-76
- Summary and Conclusions
- ☐ Future work

UW - ONR project

"Development of Assessment Methods for Alternative Fuels for Naval Diesel Engines"

Focus:

Understanding physical effects of incorporating alternative fuels into Naval systems. Identifying fuel characteristics needed for acceptable operation of current diesel engines deployed by the Navy and Marine Corps.

Research goals:

- a.) Development and validation of modeling/simulation tools that predict engine performance/degradation using wide variety of alternative fuels.
- b.) Increasing the knowledge of physical properties and chemical reactions of alternative fuels in a maritime environment.

Task1 of project

- □ Develop physical property models for baseline F-76 fuel
 □ Development of PSGCR kinetics model.
 □ Modeling of HCCI engine ignition experiments (Task 2.1)
- ☐ Modeling of ignition experiments (Task 2.2)
- □ CFD simulation of engine combustion/spray behavior.

Surrogate fuel model for F-76

Physical property model for F-76

<u>Methodology</u>

- Fuels are modeled as mixtures of surrogate components whose properties are calculated using a discrete multi-component (DMC) model (32 components).
- Surrogate components and their composition are chosen to match measured distillation profiles and properties of the target fuel.
- Distillation profiles are obtained by calculating evaporation history of a single drop in boiling condition.
- Properties of a mixture are calculated from the properties of individual pure components using appropriate equations.

No.	Physical property	No.	Physical property
p1	Liquid density	p7	Vapor heat capacity
p2	Vapor pressure	p8	Vapor diffusivity
рЗ	Surface tension	p9	Vapor viscosity
p4	Liquid viscosity	p10	Vapor thermal conductivity
p5	Liquid thermal conductivity	p11	Liquid Heat capacity
p6	Heat of vaporization	p12	Critical properties

Discrete multi-component fuel model

Chemical class	Fuel component
n-Alkanes (10)	C5 ~ C21
iso-Alkanes (4)	iC ₅ H ₁₂ , iC ₈ H ₁₈ , iC ₁₀ H ₂₂ , iC ₁₆ H ₃₄
Olefins (4)	C ₈ H ₁₆ , C ₇ H ₁₄ , C ₆ H ₁₂ , C ₅ H ₁₀
Naphthenes (3)	Cyclohexane, Methylcyclohexane, Decalin
Aromatics (11)	Benzne, Toluene, Heptylbenzene, Hexylbenzene, Pentylbenzene, iso- Propylbenzene, mXylene, mCymene,

Discrete Multi-Component

☐ Discrete system of a liquid phase + Discrete mixture system of vapor phase fuel and ambient gas:

$$G_p(I) = \sum_{F=1}^{N_F} x_F^{\ p} \delta(I - I_F) + \sum_{s=1}^{N_s} x_s^{\ p} \delta(I - I_s)$$
discrete phase of fuel

discrete phase of air/fuel mixture

Vapor phase transport equation,

$$\frac{\partial}{\partial t} [\rho y_i] + \nabla \cdot [\rho y_i v] = \nabla \cdot (\rho D_i \nabla y_i) + s_{g,i}$$

$$\frac{\partial}{\partial t} [\rho y_F] + \nabla \cdot [\rho y_F v] = \nabla \cdot (\rho \overline{D} \nabla y_F) + S_g$$

(Ra and Reitz, 2009)

Tetralin, Naphthalene, Phenanthrene Is Research Review, September 19, 2012

Application of DMC model to FACE fuels

		<u> </u>															
Surrogate	Molecular			Surrog	ate n	nass fracti	ons of l	FAC	E fuels								
Hydrocarbons	Formula	1	2	3	4	5	(6	7	8	9	252					
n-decane	c10h22(PC)					0.10)		0.161		0.050	650 \Sigma 600					
n-dodecane	c12h26(PC)	0.162	0.090						0.090	0.027		ature 550	TAGET,	model			
n-tridecane	c13h28(PC)				0.0	50 0.16	5					e 500					
n-tetradecane	c14h30(PC)				0.0	00 0.13	0.0	99	0.100	0.169	0.050	Boiling temperature [K] 000 250 009 420	2000				
n-hexadecane	c16h34(PC)			0.080	0.0	50 0.06	0.1	198	0.102	0.122	0.181	400			FACI	Ξ#1	
n-octadecane	c18h38(PC)	0.101	0.020	0.040	0.0	70 0.07	0.0	91	0.041	0.051		650 •					
n-eicosane	c20h42(PC)		0.050								0.061	ature [— FACE3,	model		1	>
n-heneicosane	c21h44(PC)		0.050		0.0	80	0.0	080		0.046		temperature [K] 550 500					
2,2,3,3 tetramethylhexane	c10h22(IP)	0.260	0.367	0.095	0.0		_ \C_	<u> </u>		Meas	sured	- ig	lodel		FACI	F#3	
2,2,4,4,6,8,8 heptamethylnonane	c16h34(IP)	0.100	0.070	0.100	0.1	Hydro	ACE carbo		type	con	tent nass)	cc	ontent mass	riment	i Aqi	_#3]
cyclohexane	c6h12(MCP)	0.030	0.030	0.050	0.0	Р	araffi	ins			4	 	34.2				\$
decalin	c10h18(DCP)	0.120	0.120	0.200	0.1	Total	napt	her	nes	3	4	;	34.0				
m-xylene	c8h10(AB)		0.010	0.020		-	benz				3.2		18.4		Ť		_
tetralin	c10h12(AB)	0.008	0.007	0.075	0.0	Mond			-		.2		7.9		FAC	E#5	-
naphthalene	c10h8(PA)	0.015	0.012	0.058		Poly			CS		.5		5.5	erimen	ŧ l		
anthracene	c14h10(PA)				0.0	17	etrali			Ο. Ι <u>Λ 160</u>	9		6.9	del			þ
m-cymene	c10h14(AB))	В		D+	Р	rope	rty		Meas	sured	N	lodel				
n-pentylbenzene	c11h16(AB)	C+					/C ra				79	_	1.79				-
n-hexylbenzene	c12h18(AB)	55			D		/ (M.				.44	1	2.61			E#7	-
n-heptylbenzene	c13h20(AB)	Cetane		9		Cetane Number		ber	45.0		51.9 3 0.4 0.5 0.6 0.7 0.8 0.9 1 Evaporation fraction		1				
Number of surrogate species			200		<i>'</i> '	2 14	9)	12	12	12						
Company of Wisconstill		H 20% A	romatic Conte	G ent 40%		าน <mark> Kri</mark>	shna	san	ny, Ra	a, Reitz	and E	Buntin	g – Er	ergy	& Fue	ls 201	1

Activity Coefficients of Face #9 Surrogates

UNIFAC Model

Departure
from Raoult's
law Non-ideal
vaporization
influences
heavy-end
of distillation
curve *

$$p_{i,v} = x_{i,v} P$$

 $= x_{i,l} \gamma_i P_{sat,i}$

* Krishnasamy, Ra, Reitz and Bunting – Energy & Fuels 2011

MACCCR 5th Annual Fuels Research Review, September 19, 2012

Multi-component fuel vaporizing sprays

Measured composition of F-76

I Fuels

Model composition of F-76

Fuel composition

Class	Mass fraction				
Class	Measured	C-range	Model, R0		
n-alkane	50.50	C9~C21	59.94		
i-alkane	25.38	C8~C20	25.94		
mono-naphthene	4.53	C7~C16	4.71		
poly-naphthene	0.44	C11	0.46		
mono-aromatic	6.39	C7~C11	6.31		
poly-aromatic	0.84	C12	0.88		
tetralin	1.52	C10~C11	1.58		
alkene	1.66	C9~C19	1.76		
oxygenated	5.87	C9~C20	0		
other	3.61	C9~C20	0		

- For the current surrogate model, the contents of Oxygenate and Other are added to n-alkanes proportionally.
- ➤ Oxygenates are mostly alcohols (C₁₆H₃₄O) and ketones (C₁₀H₁₆O).
- → to be considered in the future (non-ideal mixture model-UNIFAC).

Model composition of F-76

	·			1			
Class	l N	Mass fraction					
Class	Measured	C-range	Model, R0	Model, R1			
n-alkane	50.50	C9~C21	59.94	56.6			
i-alkane	25.38	C8~C20	25.94	26.4			
mono-naphthene	4.53	C7~C16	4.71	4.7			
poly-naphthene	0.44	C11	0.46	0.5			
mono-aromatic	6.39	C7~C11	6.31	8.6			
poly-aromatic	0.84	C12	0.88	1.4			
tetralin	1.52	C10~C11	1.58	1.6			
alkene	1.66	C9~C19	1.76	1.8			
oxygenated	5.87	C9~C20	0	0			
other	3.61	C9~C20	0	0			

- ➤ With slight adjustment of composition and number of species, a better agreement was obtained.
- → Automation of the process is desirable.

	Property	Measured	Model, R0	Error [%] of R0	Model, R1	Error [%] of R1
	Density [g/cm^3] at 15C	0.845	0.785	-7.1	0.789	-6.6
	Viscosity [cSt] at 40C	3	2.12	-29.5	2.27	-24.2
	Surface tension [dynes/cm] at 20C	28	26.57	-5.1	26.83	-4.2
	LHV[MJ/kg]	42.6	44.07	3.5	43.95	3.2
	H/C [mol ratio]		2.05		2.03	
	Hydrogen content[%]	13.2	14.6	10.6	14.47	9.6
	MW[g/mol]		191.6		196.5	
ıΛ	CN	51	60.14	17.9	58.04	13.8

Oxygenated components in F-76

Molecular weight [g/mol]

Formula	MW	Area_fraction [%]	Species name	Class
C ₁₀ H ₁₆ O	152	0.825	4,7,7-trimethyl- bicyclo[4.1.0]heptan-3-one	ketone
C ₁₀ H ₁₈ O	154	0.436	3-butyl- cyclohexanone	ketone
C ₁₀ H ₂₀ O	156	1.055	5-methyl-2-(1-methylethyl)- cyclohexanol	alcohol
C ₁₃ H ₂₆ O	198	0.398	cyclododecanemethanol	alcohol
C ₁₆ H ₃₄ O	242	1.33	2-hexyl- 1-decanol	alcohol

Automation of fuel modeling process

Target properties:

- Distillation profiles
- Specific gravity
- Viscosity
- Surface tension
- Lower heating value (LHV)Hydrogen to carbon (H/C) ratio
- Contents of chemical classes
- Cetane number
- ➤ User inputs are used as constraints.
- Sensitivity of property variation to composition change is obtained in each generation and used in the next generation to modify the model composition.

al Fuels Research Review, September 19, 2012

Test of automatic surrogate search

- ➤ Starting composition: Even (arbitrary) distribution of mass fraction of surrogate components in nalkane, iso-alkane, olefin, naphthene and aromatic classes. (→ 16 components)
- ➤ Matching tolerance (inputs) for each property may be different.
- ➤ 13 generations were simulated to match the measured distillation profile.

Physical Surrogate Group Chemistry Representation 17

(PSGCR)

Fuel species in PSC model

Fuel species in chemistry model

- ☐ Reaction pathways of base surrogate components (chem1, chem2, ...) represent reaction characteristics of a chemical class (GCR)
- ☐ The reactivity of physical surrogate components is captured by the generic reactions connecting the PSC and the base chemical surrogate components (CSC).

PSGRC: generic reactions for $C_{21}H_{44}$

No.	Reaction	Α	n	Ea
1	c21h44+h=c14h29+c3h6+c4h8+h2	1.20E+13	0.0	8400.0
2	c21h44+h=c14h30+c7h15-2	1.20E+13	0.0	8400.0
3	c21h44+oh=c14h29+c3h6+c4h8+h2o	2.70E+13	0.0	-630.0
4	c21h44+oh=c14h30+c6h13+ch2o	5.06E+08	1.0	2870.0
5	c21h44+ho2=c14h29+c3h6+c4h8+h2o2	1.00E+11	0.0	16000.0
6	c21h44+ho2=c14h30+c6h13+hco+oh	1.00E+11	0.0	14000.0
7	c21h44+o2=c14h29+c3h6+c4h8+ho2	6.00E+12	0.0	32600.0
8	c21h44+o2=c14h30+c6h13+hco+o	5.20E+11	0.0	34600.0
9	c21h44+o=c14h29+c3h6+c4h8+oh	1.20E+10	0.0	3000.0
10	c21h44+o=c14h30+c6h13+hco	1.20E+10	0.0	3000.0
11	c21h44=c14h29+c7h15-2	2.00E+17	0.0	87000.0

□ Reaction characteristics employed:

H-abstraction, radical decomposition, olefin formation, carbonyl (aldehyde) formation, active radical reproduction (OH, O, HO₂), unimolecule decomposition

□Reaction rate constants were first borrowed from similar reactions in detailed mechanism and then adjusted to give ignition delay times matching available experimental data or known CN behavior.

Type-1 (13 components): c12h26, c13h28, c10h22, c16h34, c18h38, c20h42, c21h44, ic10h22, c13h20, c12h18, c11h16, mcymene, ic9h12(isopropylbenzene),

PSGRC for F-76

Type-2: mXylene

Type-3: iC16H34 (HMN)

Type-4: Tetralin

Type-5: Naphthalene (C10H8)

Type-6: PAH cascade

35 surrogate component data base (194 species, 877 reactions)

Type-6: PAH cascade

 $HC + H \Rightarrow HC^* + C4H4$

 $HC + H2 => HC^* + C4H3$

 $HC + OH => HC^* + C2H2 + HCCO$

HC + HO2 => HC* + C2H + HCCO + OH

 $HC + O2 \Rightarrow HC^* + C2H + HCCO + O$

 $HC + O => HC^* + C2H + HCCO$

 $HC \Rightarrow HC^* + C2H + C2H$

HC: PAH components

HC*: one-ring-less PAH components

			,				
Chemical class		Fuel component					
Allson	Base (6)	c14h30, nc7h16, nc6h14, nc5h12, c4h10, c3h8					
n-Alkane	Extended (7)	tended (7) c10h22, c12h26, c13h28, c16h34, c18h38, c20h42, c21h44					
in a Allenna	Base (2)	ic8h18, ic5h12					
iso-Alkane	Extended (2)	ic16h34, ic10h22	· ≻M				
Olefin	Base (4)	c7h14, c6h12, c5h10, c4h8	- cc - ac				
	Extended		CC				
Naphthene	Base (3)	Cyclohexane(CHX), Methylcyclohexane(MCH), Decalin(c10h18)	ol				
-	Extended		- as				
	Base (2)	toluene, benzene	(a				
Aromatic	Extended (9)	Heptylbenzene(c13h20), Hexylbenzene(c12h18), Pentylbenzene(c11h16), iso-Propylbenzene(ic9h12), mXylene, mCymene, Tetralin, Naphthalene(c10h8), Phenanthrene(c14h10)	(0.				

➤ More extended components should be added to model combustion of heavier olefins and naphthenes, as well as heavy oxygenated fuel (alcohols) in the future.

Phenanthrene(c14h10) = ptember 19, 2012

		1000 1.E-	-02 — c7h16
		⇒ Experiment	n-Alkanes ——
		<u>8</u> 100	C-number —c10h22
Component	Model, R0	<u>E</u> 100 Model	increase —c12h26
·	mass fraction		—c13h28
ic5h12	0	ਊ 10 Propane ਭੂ	—c14h30
c5h10	0	phi=1.0	c16h34
nc5h12	0	Pin= 30 bar	CN _{c7} =52,
c6h12	0		$CN_{c16} = 100,$
nc6h14	0	0.1 + + + + + + + + + + + + + + + + + + +	
chx	0	0.9 1 1.1 1.2 1.3 1.4 1.5	-05 +
c7h14	0	1000/T [1/K]	1000/T [1/K]
nc7h16	0.003392	1.E-01	10 ⁵ =
ic8h18	0.000440	iso-Alkanes	LLNL mech
mch	0.047096	Ö 1.E-02	10"
c7h8	0	1.E-02 September 1.E-03	MCH Experiments
c8h16	0.017554	lay	2 103
mxylene	0	® 1.E-03	ERC- MultiChem
ic9h12	0	ic5h12 (10.5)	MCH / air, 4 = 10, 50 atm
ic10h22	0.055656	The state of the	101 A cumont 50 atm deta * Vasuret at, 45 atm scaled to 50 atm Expt:
c10h22	0.031780	<u>—ic10h22 (12)</u>	× Pitz et al., 20 atm scaled to 50 atm Vanderover,
mcymene	0.012754	—ic16h34 (15)	scaled to 50 atm 1,962% NCH 2008
c10h18	0.004612	1.E-05	best fit to all 50 arm scaled data — Pitz et al. nechanism. 50 atm
c12h18	0.012754	0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
c11h16	0.021796	1000/T [1/K]	1000/T (1/K)
tetralin	0.015830	10	0.1
c12h26	0.056447	◆ Experiment — Model	—tetralin(cn13)
c10h8	0.005588		0.01 — c13h20(cn35) — c12h18(cn=26)
c13h28	0.029471	Decalin phi=1.0 Pini=40 bar	
c13h20	0	Decalin Decalin	© 0.001 —cymene(cn=2)
ic16h34	0.197714	becdini	wylene(cn=4.7)
c14h30	0.083634	in 0.1 pn = 1.0	—ic9h12(cn=15)
c16h34	0.183337	. Pini=40 bar	0.0001 — c14h10(cn9) — c10h8(cn9)
c18h38	0.081714	Expt: Oehlschlaeger et al., 2008	— toluene(cn1)
<u>ac14h10</u>	0.008777	0.01	0.00001
5c20h42	0.064088	0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	0.7 0.9 1.1 1.3 1.5
c21h44	0.065566	1000/τ [1/κ] Resear	1000/T [1/K]

F-76 Model application

Fuel: F-76

Components	mass fraction
mch	0.047123
c8h16	0.017564
ic10h22	0.028789
c10h22	0.052278
mcymene	0.022761
c10h18	0.004615
c12h18	0.022761
c11h16	0.024808
tetralin	0.015839
c12h26	0.020146
c10h8	0.005592
c13h28	0.013004
ic16h34	0.234979
c14h30	0.005729
c16h34	0.195880
c18h38	0.144496
c14h10	0.008782
c20h42	0.093282
c21h44	0.041573

Fuel mass fraction distribution

For a given injection amount, to determine ➤ Air mass flow rate

- ➤Inlet air temperature (heated air < 250 C)
- ➤Drop size (SMD)

September 19, 2012

Summary and Conclusions

- A surrogate model for physical properties of F-76 fuel was developed and validated against measured data.
- Automation of the modeling process is in progress.
- The surrogate fuel model is being used to help determine experimental conditions.
- Extending group chemistry representation, physical surrogate components were considered in combustion chemistry using generic reaction pathways.
- Performance of the PSGCR model was tested for ignition delay times prediction.

Future work

- Further development of reaction mechanisms for heavy olefins and naphthenes, as well as heavy alcohols.
- Improvement and validation of the automatic surrogate builder.
- Modeling of HCCI engine ignition experiments (Task 2) using PSGCR combustion model.
- Modeling of spray ignition experiments (Task 2) will be performed
- CFD simulation of engine combustion/spray behavior.

Thank you!

Questions?

Group Chemistry Representation (GCR) model 25

MACCCR 5th Annual Fuels Research Review, September 19, 2012

Group Chemistry Representation (GCR) model 26

